

Blockchains in the new era of
participatory media experience

HORIZON 2020

762091 – BLOOMEN - H2020-ICT-2016-2
ICT-19-2017 Media and content convergence

D4.9 Bloomen overall integrated system - 3rd cycle

Version: 1.0

Date: 31/08/2020

Authors: ATC

Type: Demonstrator

Dissemination level: Public

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 2 / 24

Table of Contents

1 Introduction 4

1.1 About this deliverable 4

1.2 Document Structure 4

2 Integration Methodology 5

3 System Components 6

3.1 Bloomen Wallet 6

3.1.1 Description and role in Bloomen system 6

3.1.2 Integration with Bloomen platform 6

3.1.3 Integration Methodology 6

3.1.4 Requirements fulfilled 6

3.1.5 Testing Results 7

3.2 Kendraio App 8

3.2.1 Description and role in Bloomen system 8

3.2.2 Integration with Bloomen platform 8

3.2.3 Integration Methodology 8

3.2.4 Requirements fulfilled 8

3.2.5 Testing Results 8

3.3 REST API 9

3.3.1 Description and role in Bloomen system 9

3.3.2 Integration with Bloomen platform 9

3.3.3 Integration Methodology 10

3.3.4 Requirements fulfilled 11

3.3.5 Testing Results 12

3.4 Smart Contracts 13

3.4.1 Description and role in Bloomen system 13

3.4.2 Integration with Bloomen platform 13

3.4.3 Integration Methodology 14

3.4.4 Requirements fulfilled 14

3.4.5 Testing Results 14

3.5 Anonymization Module 16

3.5.1 Description and role in Bloomen system 16

3.5.2 Integration with Bloomen platform 16

3.5.3 Integration Methodology 16

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 3 / 24

3.5.4 Requirements fulfilled 16

3.5.5 Testing Results 17

3.6 Management portal 18

3.6.1 Description and role in Bloomen system 18

3.6.2 Integration with Bloomen platform 18

3.6.3 Integration Methodology 18

3.6.4 Requirements fulfilled 19

3.6.5 Testing Results 20

3.7 Decentralized Rights Management Tool 21

3.7.1 Description and role in Bloomen system 21

3.7.2 Integration with Bloomen platform 21

3.7.3 Integration Methodology 21

3.7.4 Requirements fulfilled 22

3.7.5 Testing Results 22

3.8 BaaS Portal - Bloomen developer Portal 23

3.8.1 Description and role in Bloomen system 23

3.8.2 Integration with Bloomen platform 23

3.8.3 Integration Methodology 23

3.8.4 Requirements fulfilled 23

3.8.5 Testing Results 23

4 Conclusions 24

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 4 / 24

1 Introduction

The overall integrated system of Bloomen refers to the fully functional set of Bloomen
modules together with the Bloomen platform which fulfils the requirements of
Bloomen project. The various functional components of Bloomen are brought
together and interact with each other in order to cover the needs of a variety of
business workflows. In this deliverable we are covering the methodology and the
definition of the approach we have used to integrate and validate the various modules
of Bloomen into one single system, updating the information provided in D4.7 and
D4.8, focusing on the testing results of every component.

The three use cases of the Bloomen project (Music, Photo and WebTV) played an
important role in technical development and integration and helped us to put
blockchain technology to good use, tackling the different limitations. Core elements,
such as smart contracts are available via an extensive API, which simplifies calling
features and functionalities where needed.

1.1 About this deliverable

This deliverable is the third cycle of a software prototype. In the course of the Bloomen
project this series of deliverables is the specific outcome of Task 4.4 “Overall
integration and validation”. The final version of the software prototype is accompanied
by this short document, which provides a description of the approach we used for the
integration and validation of the system, providing, also, short, updated, descriptions
of the different components.

D4.9 contains all the updates of the components that have been already presented in
D4.8 (the second cycle of the software prototype) and D4.7 (the first cycle of the
software prototype), along with details for their testing results.

1.2 Document Structure

D4.9 follows the same structure with both D4.8 and D4.7.
• A general description of the Integration Methodology is provided in Section 2;

• Section 3 presents the different components that are integrated.
• Section 4 contains the conclusions.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 5 / 24

2 Integration Methodology

As already described in both D4.8 and D4.7, for the integration purposes of the project
we followed the Agile Software Development Practices with frequent integration
cycles, rapid prototyping and close collaboration between self-organizing, cross-
functional teams. Based on agile principles, we have applied Continuous Integration
techniques to perform automated building, testing and deployment of the provided
modules, while we set-up a development environment containing a set of continuous
integration tools for adopting Continuous Integration practices.

Continuous integration (CI) comprises practices such as daily builds and additional
checks so as to prevent bugs. In order to enable automatic daily builds, Continuous
Integration software gathers the whole source code in one place (with different
revisions), automates the build process and testing, and provides the latest working
executable to anyone involved in the project. The CI model comprises a set of
activities for the process implementation: building the system, running tests,
deployment activities, and finally reporting test and deployment results. The practice
of Continuous Integration assumes a high degree of tests, which are automated into
the software: a facility that can be seen as “self-testing code”, often using a testing
framework.

In the scope of the Bloomen project, we adopted an Agile development process based
on the Kanban methodology. The methodology is based on the assumption that all
tasks are described as tickets which are assigned to Bloomen team members and are
distributed and collected in various columns of a Kanban board. The initial
requirements are described as user stories.

The main integration of each pilot with the Bloomen platform has been achieved
through the Bloomen platform API. The API provided all the necessary functions for
each use case, which were constantly being updated through a shared spreadsheet,
and provided an abstraction layer to the complexity of the lower level blockchain
functionalities, wherever these were needed.

The User Management and Authentication modules, and all other global
functionalities, are provided for all use cases through the shared Admin Panel, which
is an extension of the Bloomen platform. We used the Ethereum based token called
BLO. The BLO tokens can be accessed through the wallet functionality of either the
mobile app (video use case) or photo use case profile page. More details can be found
at D3.3 - Blockchain transactions and payment basic services - 3rd cycle.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 6 / 24

3 System Components

The components that are integrated in the Bloomen system are presented in this
section. The description of every component is updated and accompanied by the
methodology of the integration, the fulfilled requirements and the testing results.

3.1 Bloomen Wallet

3.1.1 Description and role in Bloomen system

The Bloomen wallet consists of an application for mobile devices that allows
interaction with smart contracts hosted in the Alastria Blockchain. The distributed
nature of this technology allows us to access functionalities/services offered by smart
contracts from any node of the blockchain without having a single point of interaction
as in traditional systems.

This component has a specific deliverable within the project ([M18] D4.3 - Bloomen
mobile clients - 1st cycle && [M32] D4.4 - Bloomen mobile clients - 2nd cycle) where
you can find documentation about its functionalities.

3.1.2 Integration with Bloomen platform

This component is integrated with the other modules through Smart Contracts
deployed in the blockchain.

3.1.3 Integration Methodology

Ethereum JSON RPC API.

3.1.4 Requirements fulfilled

The requirements fulfilled can be found in Table 1.

ID (from D2.2) Name Fulfilled
RNF-GT-4 Privacy by design Data Storage X
RNF-GT-8 User Digital Wallet X
RNF-GT-9 Anonymous Personalization X
RF-WTV-1 User Registration X
RF-WTV-2 Create Account X
RF-WTV-3 Create Wallet X
RF-WTV-4 View Wallet X
RF-WTV-7 Purchase Product X

Table 1: Requirements fulfilled for Bloomen Wallet

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 7 / 24

3.1.5 Testing Results

Due to the technical complexity of automating the tests, it has been decided to
perform manual test tasks following the specifications of the documents (D4.3 &
D4.4) where the software is described.

The solution has passed all the tests and has been used successfully in the WebTv
pilot without reporting any incident. Additionally, the Bloomen Wallet has passed the
different validation phases of the Apple and Google stores to ensure compatibility with
user devices.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 8 / 24

3.2 Kendraio App

3.2.1 Description and role in Bloomen system

The Kendraio App provides a framework for prototyping copyright management
workflows within the Bloomen project. As such the application intends to extend
features and functionalities, based on the Bloomen core architecture. The framework
will also be developed to be used as a management portal for accessing Bloomen
administrative features.

3.2.2 Integration with Bloomen platform

The Kendraio App is a standalone app that integrates via the Bloomen API. The
Kendraio App provides bulk import services to the API, the ability to manage users and
their permissions, and manipulating metadata for content items.

3.2.3 Integration Methodology

The Kendraio App uses Adapters to provide integration with external systems and
services. The current iteration of the Kendraio App uses the Bloomen REST API via
HTTP connection.

3.2.4 Requirements fulfilled

The requirements fulfilled can be found in Table 2.

ID Name Fulfilled
1 Tag created content X
2 Define usage terms X
3 Bloomen API integration X
4 Copyright management workflows X
5 Asset management X
6 Integration with third party APIs X

Table 2: Requirements fulfilled for Kendraio App

3.2.5 Testing Results

The testing plan for the Kendraio App was executed to ensure correct operation of the
application by using manual testing scripts. Sample data was provided by partners
and used to confirm the valid operation of workflows within the App. All the
implemented workflows within the App were run with the provided sample data and
the expected results were observed. This included workflows for management of data
via the API. In particular, the sample data provided by BMAT was imported, queried,
and updated successfully. Additionally, further testing of the App was performed as
part of the workflows implemented for the Management Portal, which is documented
separately below.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 9 / 24

3.3 REST API

3.3.1 Description and role in Bloomen system

The Bloomen platform API is a RESTful API that allows the different pilots to use basic
functionality for each of their cases, such as authentication management, file uploads,
etc., and gain access to blockchain operations. The API achieves this without having
to interact with the blockchain infrastructure and general complexity, thus making
blockchain operations as simple as an HTTP API call. The role of the Bloomen
platform API is to glue together the different functionalities for the already created
pilots, as well as potential future pilots created by the blockchain or any other
communities interested in secure transparent transactions. Further the API removes
all the sophisticated knowledge otherwise required by developers to use blockchain
technologies. The API replaces these needs through simple and easily customized
components. This approach opens the door to fill as many use cases as possible, thus
creating a Bloomen ecosystem of applications.

3.3.2 Integration with Bloomen platform

The Bloomen platform API is at the center of the integration effort, as it provides an
interface for all the basic functionalities that the pilots require for them to work. Each
pilot uses the parts of the Bloomen platform API that it needs for basic functionalities,
but is also free to use whatever else backend, or blockchain, it chooses to, to complete
its purpose. If pilots need direct access to the smart contract and blockchain
functionalities, they can use different tools from the API for direct integration with the
blockchain, such as the web3 library, or the RPC api.

To use the API, pilots can use the swagger documentation for understanding what
functionality each endpoint provides as seen below (Figure 1).

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 10 / 24

Figure 1: swagger documentation

3.3.3 Integration Methodology

For the integration purposes of the Bloomen platform we follow the Agile Software
Development Practices with frequent integration cycles, rapid prototyping and close
collaboration between self-organizing, cross-functional teams. Based on agile
principles, we are also applying Continuous Integration techniques for performing
automated building, testing and deployment of the provided modules. For adopting
Continuous Integration practices we are going to setup a development environment
containing a set of continuous integration tools such as the nyc testing framework,
Jenkins, etc.

The Jenkins job for building the Bloomen platform backend is shown in the following
screenshot (Figure 2).

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 11 / 24

Figure 2: Jenkins for Bloomen

3.3.4 Requirements fulfilled

The requirements fulfilled can be found in Table 3.

ID (from D2.2) Name Fulfilled
RF-PH-1 Upload image X
RF-PH-2 Set image price X
RF-PH-3 Browse images X
RF-PH-4 Search for images X
RF-PH-5 Filter images X
RF-PH-6 Buy image rights X
RF-PH-7 Give image rights X
RF-PH-8 Vote contributor X
RF-PH-9 View analytics X
RNF-PH-1 Set privacy settings X
RNF-PH-2 Workflow efficiency X
RNF-PH-3 Reliability of payments X

Table 3: Requirements fulfilled for REST API

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 12 / 24

3.3.5 Testing Results

The basis of the Bloomen platform API testing is unit testing the different controllers
for each route, as well as every functionality and service that can be tested, including
the contracts and interactions with the contracts. Since the smart contract
functionality is also tested through the individual route and service unit tests, this kind
of testing could also be considered integration testing between the Express server and
the Smart Contract and blockchain infrastructure.

For unit testing the application, we have used the mocha and chai libraries, as well as
the tools provided by the truffle suite, to test the contracts individually. In addition,
with these frameworks, we use nyc CLI tool to keep track of test coverage and keep
testing relevant, after making changes to the code. Code test coverage at this point is
at about 70% and tests are added continuously.

Furthermore, the platform was tested by users that did not belong in any part of the
development process and the results were positive (More details can be found in D5.7-
Overall evaluation report).

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 13 / 24

3.4 Smart Contracts

3.4.1 Description and role in Bloomen system

“Smart contracts” are a big innovation of blockchain technologies. The promise here
is to reduce the manual work of setting up and the even more complex work of
checking the actual transactions versus the fine print agreed on in an analog contract.
This is why, in the course of Bloomen smart contracts are considered an important
technology element.

Several smart contracts have been built and deployed in the context of the Bloomen
System. The BLO Smart Contract is considered responsible for the implementation of
all the methods required in order for an external web service to interact with the
blockchain as well as the data stored within. As a matter of fact, it means that this
contract manages the sale and purchase of photos along with their ownership rights.
On the other hand, BLO Token is an example of ERC223 that interacts with the BLO
Smart Contract to fulfill all the payment procedures of the blockchain transactions.

Furthermore, there are smart contracts, developed in order to facilitate the
functionalities for the various components of the Bloomen. More specifically these
smart contracts are divided into two categories, the smart contracts for music asset
conflict resolution and the smart contracts, for the KYC implementation. As far as the
smart contracts for the Music assets resolution is concerned, these smart contracts
are responsible for storing, retrieving and updating music asset claims for ownership
and more importantly they contain functionalities in order to detect any conflicts in
the music asset claims. As for the KYC smart contracts, they are responsible for the
CRUD operations of the KYC information of the user. These smart contracts are able
to store and retrieve important information of the users that wish to be or are KYC
approved, maintaining in the process the anonymity of the users.

3.4.2 Integration with Bloomen platform

All contracts are written in Solidity and are deployed on a Quorum instance running
inside the Alastria ecosystem. All the communication between blockchain and other
components is implemented in JavaScript through web3.js and similar libraries.
Although it is highly recommended to use the Bloomen API by all external applications,
there is an ability to interact directly with the blockchain by using web3.js or a similar
library. Developers are not encouraged to do so, but, nevertheless, it is supported by
the platform.

As for the music asset conflict resolution the smart contracts can be found:
https://github.com/bloomenio/bloomen-decentralized-rights-management-
v2/tree/master/truffle/contracts/registry

The KYC smart contracts can be found : https://github.com/bloomenio/kyc-contracts

https://github.com/bloomenio/bloomen-decentralized-rights-management-v2/tree/master/truffle/contracts/registry
https://github.com/bloomenio/bloomen-decentralized-rights-management-v2/tree/master/truffle/contracts/registry
https://github.com/bloomenio/kyc-contracts

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 14 / 24

3.4.3 Integration Methodology

For the integration purposes of the contracts in this project, the Agile Software
Development Practices were followed. This methodology requires frequent
integration cycles, rapid prototyping and close collaboration between self-organizing,
cross-functional teams. In particular, Kanban methodology was adopted in this
component. The methodology is based on the assumption that all tasks are described
as tickets which are assigned to Bloomen team members using trello platform and
are distributed in the various columns of a Kanban board. The initial requirements are
described as user stories that typically follow the following template: As a < type of
user >, I want < some goal > so that < some reason > e.g. “As a consumer, I want to
search uploaded photos so that I can find the right one.”. The lifecycle of development
was split in 2-weeks iterations, named Sprints. Each Sprint contains a board where
tasks were organized between “TODO”, “In Progress”, “To Test” and “Done” columns.

3.4.4 Requirements fulfilled

The requirements fulfilled can be found in Table 4.

ID (from D2.2) Name Fulfilled
RF-PH-1 Upload image X
RF-PH-2 Set image price X
RF-PH-3 Browse images X
RF-PH-4 Search for images X
RF-PH-5 Filter images X
RF-PH-6 Buy image rights X
RF-PH-7 Give image rights X
RF-PH-8 Vote contributor X
RF-PH-9 View analytics X
RNF-PH-1 Set privacy settings X
RNF-PH-2 Workflow efficiency X
RNF-PH-3 Reliability of payments X

Table 4: Requirements fulfilled for Contracts

3.4.5 Testing Results

The testing results for the Bloomen Smart Contracts represented and fulfilled the
initial testing plan expectations with regard to security, performance, stability and
enterprise needs. Particularly, through the Unit testing and Beta software testing, the
smart contracts development, organization and maintenance consolidated into a
holistic manageable scheme that provides governance and advanced control from
within integrated environments. In the entire project, smart contracts constitute the
core business intelligence point of reference while they successfully capture the
foundation of the leading algorithms that are utilized in the industry. All smart contract
methods responded favorably to the various validity tests while they present full
integration with each use case pilot. Smart contract endorsement is obtained after

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 15 / 24

multiple testing of features and functionalities that eventually provided satisfying
results with respect to the initial expectations and the industry domain measures.

Ultimately, the development environment strategies and methodologies are detailed
in this section. In particular, Truffle Suite helped direct and regulate the Solidity smart
contract development and testing efforts in an organized and time-efficient manner.
The dedicated framework of Truffle Suite automates rapid built-in smart contract
compilation as well as linking, deployment and binary management. Through asset
pipelining Truffle Suite enables automation and management of RPC calls on the
underlining Quorum related blockchain infrastructure. Additionally, Atlassian Jira
platform aided in business intelligence definition and expectation satisfaction.
Through a sprint-based agile methodology, new components creation together with
development and maintenance were coordinated through Atlassian Jira boards and
tickets. The development and testing teams worked closely together with the domain
experts and collaborated through Jira to monitor the progress of development. Any
issues or malfunctions were reported and addressed, in order to maintain a high
product quality.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 16 / 24

3.5 Anonymization Module

3.5.1 Description and role in Bloomen system

The Anonymization Module offers privacy preserving techniques, personalization and
identity management over blockchain enabled media delivery platforms. This module
mainly focuses on the distribution and decentralization of the identity management
functionality including anonymity and personalization functionalities as well.Also it
provides functionalities in order to enable the KYC approval of the users that wish to
use the Bloomen platform. This module also implements specific techniques and
methodologies in order to preserve the anonymity of the user despite by implementing
both private and public smart contracts in the Quorum blockchain.

More specifically users are able to commit all the files needed in order to be KYC
approved. These files are stored in a decentralized IPFS storage which is accessed
only by the KYC admins. After the full evaluation of the files, the KYC approval is
triggered by the admins. In order to ensure anonymity, only a strict amount of
information is accessible through the public smart contracts deployed in the Quorum
Blockchain.

The main prototype of this module is described in deliverables D3.4 - Anonymous
personalization services - 1st cycle and D3.5 - Anonymous personalization services -
2nd cycles and finally the work is concluded in D3.6 - Anonymous personalization
services - 3rd cycles.

3.5.2 Integration with Bloomen platform

The integration with the Bloomen platform is simplified by using the Bloomen API,
enabling connections between different modules and across current and future use
cases.

3.5.3 Integration Methodology

The Anonymization Module is communicating with the different components of
Bloomen Platform through the Bloomen API. For example, the communication with
smart contracts deployed on Quorum blockchain platform is based on Bloomen API.

3.5.4 Requirements fulfilled

The requirements fulfilled can be found in Table 5.

ID (from D2.2) Name Fulfilled
RNF-MUS-1 Privacy Policies X
RNF-GT-1 Privacy by design Logic X
RNF-GT-2 Privacy by design Data Anonymization X

Table 5: Requirements fulfilled for Anonymization module

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 17 / 24

3.5.5 Testing Results

The efforts of integrating the developed Anonymization Module with one of the three
use cases succeeded, while the Music Pilot undertook this correlation. The impact of
the Anonymization Module on the pilot was total in the sense that all the module's
components were entirely functional and demonstrated. The user management
component of the Music Pilot, together with user form, super admin inbox and various
others were modified towards integrating with the new added KYC component of the
Anonymization Module. Additionally, the IPFS library and the IPFS components of the
Anonymization Module were successfully established and utilized inside the pilot
within the expected performance measures. Overall, during testing, user anonymity is
preserved as designed and predicted, while the newly integrated KYC admins are able
to approve or reject a user request under the conditions defined by the Anonymization
Module. Moreover, the date expiration functionality is successfully delivered inside the
Music Pilot through interoperable capabilities that assess validity periods of each
system user. All defined Anonymous Personalization methods and functions are
elegantly operating inside the pilot and are providing a high quality product with
expendable development opportunities. For a detailed description of the various
development environments and platforms on this integration, please refer to section
3.7.5 below, the Decentralized Rights Management Tool.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 18 / 24

3.6 Management portal

3.6.1 Description and role in Bloomen system

The Management Portal provides access to an admin user interface for common
functionality across the whole Bloomen platform. Requirements that are related to
administration of the system or management of the pilots are to be implemented here.

Features have been developed as part of the Kendraio App to provide user interfaces
for the requirements. These interfaces are created as workflows within the App, which
integrate with the rest of the Bloomen system via the API.

3.6.2 Integration with Bloomen platform

The implementation of the management portal relies on integration with the Bloomen
platform by connecting into the Bloomen API. It builds on top of already implemented
functionality to provide a user interface for management of the Bloomen platform.

For the user interfaces that make up the management portal functionality, workflows
are created as part of an Adapter for the Kendraio App. Many workflows have been
created, with the main flows relevant to the portal functionality being the following:

• musicalWorks.json - manage musical works via the API

• soundRecordings.json - manage sound recordings via the API

• bulkImport.json - convert and upload a bulk data file using the batch processing
features of the API

• editOrganisation.json - edit an organisation (used to inform content grouping)

• editSoundRecording.json - update metadata for a sound recording
• editUser.json - edit a user’s metadata

• editWork.json - edit a musical work’s metadata

• exportWorks.json - download and create an export file from musical works
present in the API data

• importFromFile.json - import a single data file

• importMusicalWorks.json - import musical works data

• importRecordings.json - import sound recordings data

• listGroups.json - list the available content groups (used by import features)
• Login.json - connect the App to the API and generate authentication credentials

• Register.json - create a new user record
• Search.json - search for content within the Bloomen system

• Users.json - list all users
• workVersions.json - view all revisions of a content item and restore previous

versions

3.6.3 Integration Methodology

All functionality will be present and addressed in the API. The Bloomen Adapter
contains the configuration that integrates this with the management portal features.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 19 / 24

The Adapter is managed as part of an Adapter Repository, where configurations can
be version controlled, and published as part of an automated build process.

Changes to configuration are exported and committed to the adapter repository. A
continuous integration system performs a build and deploys the packaged Adapter.
This can then be installed into any running version of the App by refreshing the adapter
list and updating the Adapter.

The Adapter configuration repository is built on every commit to the GitHub repo using
integration with Zeit Now, as shown below:

Figure 3: Continuous Integration build of the Adapter Repository

3.6.4 Requirements fulfilled

The requirements fulfilled can be found in Table 6.

ID (from D2.2) Name Fulfilled
RF-MUS-1 Asset Registration Manager X
RF-MUS-2 Batch Registration Manager X
RF-MUS-3 Asset Search X
RF-MUS-4 Assets Explorer X
RF-MUS-5 Changelog X

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 20 / 24

RF-MUS-6 Notification System Feature moved to Music
App

RF-MUS-7 Duplicate Search X
RF-MUS-8 Core Metadata Editing X
RF-MUS-9 Edit Request Management Feature dropped*
RF-MUS-10 Link Assets Feature dropped*
RF-MUS-11 Merge Assets Feature dropped*
RF-MUS-12 Merging Request Management Feature dropped*

Table 6: Requirements fulfilled for Management Portal

* With regards to RF-MUS-9/10/11/12, these features have been dropped from the
management portal as they were considered low priority with respect to others in favour
of focusing on conflict management over asset management within the app.

3.6.5 Testing Results

During the development of the workflows for the functionality of the management
portal, testing was performed using manual testing scripts. These testing scripts
mirrored the requirements being implemented.

The correct configuration for the workflows was proved by checking the operations
performed in the user interface caused the appropriate changes to have been made in
the data, as accessed via the API.

Batch registration of data was tested using various random subsets of the data
provided by BMAT for use in the music pilot. This was verified to correctly populate
the database via the bulk import endpoints of the Bloomen API.

The user management endpoints and workflows were tested and verified to correctly
update the user records. In particular, workflows were used to update user properties,
and add user group information to administrator accounts.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 21 / 24

3.7 Decentralized Rights Management Tool

3.7.1 Description and role in Bloomen system

The second iteration of this component optimally exploited the full range of
capabilities developed in first iteration, D3.2, and managed to fully embrace the
complete spirit and logic of the functional requirements of D2.2 by offering copyright
management of music assets in a decentralized environment. The basic idea of
having a shared ledger between partners that raises up claim conflicts once detected
by a smart contract comes into fruition in this iteration of the tool.

This component has more documentation in other deliverables within the project
(Demo 3 of D3.3) where you can find information about its functionalities. In a nutshell,
the core elements of this application are described in the following functionalities:

1. Music assets claims conflict detection, broadcasting to respective members
and resolving when claims value such as dates, territories, split percentage are
modified by the users (in the form of a 'Claim Update').

2. Scalable music asset claims uploading in one click through a CSV type of file.
3. Utilization of more than one CMO account.
4. Connection with Bloomen API in order to fetch and submit music asset data.

3.7.2 Integration with Bloomen platform

All smart contracts are written in Solidity and deployed on the public-permissioned
blockchain network of the Alastria ecosystem. All data exchange and requests
between blockchain and other components are implemented in JavaScript, Typescript
and Angular through web3.js library. Moreover, there is an ability to interact directly
with the blockchain by using web3.js or a similar library. Developers are not
encouraged to do so, but, nevertheless, it is supported by the platform. Furthermore,
the front end is mostly developed in Typescript and Angular so it merges entirely with
the Bloomen API.

More details about the tool source code can be found in the corresponding open-
source GitHub repository bloomenio/bloomen-decentralized-rights-management-v2 .

3.7.3 Integration Methodology

As of 3.4.3 Smart Contract Integration Methodology being a part of this current
iteration the exact integration methodology was followed here as well for the whole
development of the Decentralized Rights Management Tool (see 3.4.3).

https://github.com/atcilab/Smart-contract
https://github.com/bloomenio/bloomen-decentralized-rights-management-v2

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 22 / 24

3.7.4 Requirements fulfilled

The requirements fulfilled can be found in Table 7.

ID (from D2.2) Name Fulfilled
RF-MUS-3 Asset Search X
RF-MUS-4 Assets Explorer X
RF-MUS-6 Notification System X
RF-MUS-7 Duplicate Search X
RF-MUS-13 Claiming X
RF-MUS-14 Claims Explorer X
RF-MUS-15 Conflict Resolution X

Table 7: Requirements fulfilled for the Decentralized Rights Management Tool

3.7.5 Testing Results

The testing results for the Decentralized Rights Management Tool cover entirely the
expected features standards regarding scalability, performance, safety and business
intelligence. The quality and performance of the application are raised significantly
with the latest additions of claim search and explorer together with the latest
maintenance procedures. Thorough testing and re-building led in a rewarding and
satisfying result. The crucial functionalities of the tool deliver the pre-defined
predictions while the total workflow model is tightly related with the industry one. All
capabilities are validated through exhaustive inspection and detailed assessment with
respect to the simple asset search fetching data from the Bloomen API, down to the
complicated copyright conflict resolution that occurs on the underlining blockchain
infrastructure.

Ultimately, the quality of the tool's software is guaranteed by well-known methods of
software organization and testing. Specifically, Truffle Suite constituted a crucial
testing framework for smart contracts development. deployment, testing and review,
since it provides these processes in an organized and automated procedure.
Furthermore, Webstorm, the JavaScript IDE, was the core platform for managing and
testing the entire full-stack (Javascript, Node.js, Typescript, Angular, HTML, CSS,
Web3.js, Solidity) application. An agile methodology based on sprints made the
development of the tool easier to manage, review and address any issues and
maintain its quality.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 23 / 24

3.8 BaaS Portal - Bloomen developer Portal

3.8.1 Description and role in Bloomen system

This component is a platform that allows us to control and monitorize the access to
Quorum nodes offered by Bloomen. In this first iteration we only offer access to
mainnet (Telsius), testnet (Arrakis) and show the utilization of both on a per net
dashboard.

Figure 4: Blockchain Dashboard

This component is documented on a deliverable within the project (D3.3 - Blockchain
transactions and payment basic services - 3rd cycle) where you can find
documentation about its functionalities.

3.8.2 Integration with Bloomen platform

This component is part of the Bloomen platform.

3.8.3 Integration Methodology

Ethereum JSON RPC API.

3.8.4 Requirements fulfilled

This component is a transversal solution to the entire platform and is not related with
concrete requirements.

3.8.5 Testing Results

This software component acts transparently and uses the data collected during the
Bloomen pilots. The validation process is directly related to the quality and quantity of
data collected in real time.

D4.9 Bloomen overall integrated system - 3rd cycle

 Page 24 / 24

4 Conclusions

The 3rd cycle of the Bloomen system is presented in this document, which is the final
outcome of the Task 4.4. The components presented in the document have been
successfully integrated. Their progress has been mainly evaluated through the table
of the requirements throughout the three cycles (D4.7, D4.8 and D4.9 - Tables 1-7): the
number of fulfilled requirements -defined in D2.2- has been increasing in every cycle.

The testing results for every component are also presented in this document. The
different components of the Bloomen system have been evaluated in the three pilots,
which use the components according to their scenario and approach. All business
requirements of the project have been covered, while, at the same time, we have used
pilots outcomes to ensure that a stable and efficient system is offered to end-users.

	1 Introduction
	1.1 About this deliverable
	1.2 Document Structure

	2 Integration Methodology
	3 System Components
	3.1 Bloomen Wallet
	3.1.1 Description and role in Bloomen system
	3.1.2 Integration with Bloomen platform
	3.1.3 Integration Methodology
	3.1.4 Requirements fulfilled
	3.1.5 Testing Results

	3.2 Kendraio App
	3.2.1 Description and role in Bloomen system
	3.2.2 Integration with Bloomen platform
	3.2.3 Integration Methodology
	3.2.4 Requirements fulfilled
	3.2.5 Testing Results

	3.3 REST API
	3.3.1 Description and role in Bloomen system
	3.3.2 Integration with Bloomen platform
	3.3.3 Integration Methodology
	3.3.4 Requirements fulfilled
	3.3.5 Testing Results

	3.4 Smart Contracts
	3.4.1 Description and role in Bloomen system
	3.4.2 Integration with Bloomen platform
	3.4.3 Integration Methodology
	3.4.4 Requirements fulfilled
	3.4.5 Testing Results

	3.5 Anonymization Module
	3.5.1 Description and role in Bloomen system
	3.5.2 Integration with Bloomen platform
	3.5.3 Integration Methodology
	3.5.4 Requirements fulfilled
	3.5.5 Testing Results

	3.6 Management portal
	3.6.1 Description and role in Bloomen system
	3.6.2 Integration with Bloomen platform
	3.6.3 Integration Methodology
	3.6.4 Requirements fulfilled
	3.6.5 Testing Results

	3.7 Decentralized Rights Management Tool
	3.7.1 Description and role in Bloomen system
	3.7.2 Integration with Bloomen platform
	3.7.3 Integration Methodology
	3.7.4 Requirements fulfilled
	3.7.5 Testing Results

	3.8 BaaS Portal - Bloomen developer Portal
	3.8.1 Description and role in Bloomen system
	3.8.2 Integration with Bloomen platform
	3.8.3 Integration Methodology
	3.8.4 Requirements fulfilled
	3.8.5 Testing Results

	4 Conclusions

